Tracy–Widom distribution

Probability distribution
Densities of Tracy–Widom distributions for β = 1, 2, 4

The Tracy–Widom distribution is a probability distribution from random matrix theory introduced by Craig Tracy and Harold Widom (1993, 1994). It is the distribution of the normalized largest eigenvalue of a random Hermitian matrix. The distribution is defined as a Fredholm determinant.

In practical terms, Tracy–Widom is the crossover function between the two phases of weakly versus strongly coupled components in a system.[1] It also appears in the distribution of the length of the longest increasing subsequence of random permutations,[2] as large-scale statistics in the Kardar-Parisi-Zhang equation,[3] in current fluctuations of the asymmetric simple exclusion process (ASEP) with step initial condition,[4] and in simplified mathematical models of the behavior of the longest common subsequence problem on random inputs.[5] See Takeuchi & Sano (2010) and Takeuchi et al. (2011) for experimental testing (and verifying) that the interface fluctuations of a growing droplet (or substrate) are described by the TW distribution F 2 {\displaystyle F_{2}} (or F 1 {\displaystyle F_{1}} ) as predicted by Prähofer & Spohn (2000).

The distribution F 1 {\displaystyle F_{1}} is of particular interest in multivariate statistics.[6] For a discussion of the universality of F β {\displaystyle F_{\beta }} , β = 1 , 2 , 4 {\displaystyle \beta =1,2,4} , see Deift (2007). For an application of F 1 {\displaystyle F_{1}} to inferring population structure from genetic data see Patterson, Price & Reich (2006). In 2017 it was proved that the distribution F is not infinitely divisible.[7]

Definition as a law of large numbers

Let F β {\displaystyle F_{\beta }} denote the cumulative distribution function of the Tracy–Widom distribution with given β {\displaystyle \beta } . It can be defined as a law of large numbers, similar to the central limit theorem.

There are typically three Tracy–Widom distributions, F β {\displaystyle F_{\beta }} , with β { 1 , 2 , 4 } {\displaystyle \beta \in \{1,2,4\}} . They correspond to the three gaussian ensembles: orthogonal ( β = 1 {\displaystyle \beta =1} ), unitary ( β = 2 {\displaystyle \beta =2} ), and symplectic ( β = 4 {\displaystyle \beta =4} ).

In general, consider a gaussian ensemble with beta value β {\displaystyle \beta } , with its diagonal entries having variance 1, and off-diagonal entries having variance σ 2 {\displaystyle \sigma ^{2}} , and let F N , β ( s ) {\displaystyle F_{N,\beta }(s)} be probability that an N × N {\displaystyle N\times N} matrix sampled from the ensemble have maximal eigenvalue s {\displaystyle \leq s} , then define[8]

F β ( x ) = lim N F N , β ( σ ( 2 N 1 / 2 + N 1 / 6 x ) ) = lim N P r ( N 1 / 6 ( λ m a x / σ 2 N 1 / 2 ) x ) {\displaystyle F_{\beta }(x)=\lim _{N\to \infty }F_{N,\beta }(\sigma (2N^{1/2}+N^{-1/6}x))=\lim _{N\to \infty }Pr(N^{1/6}(\lambda _{max}/\sigma -2N^{1/2})\leq x)}
where λ max {\displaystyle \lambda _{\max }} denotes the largest eigenvalue of the random matrix. The shift by 2 σ N 1 / 2 {\displaystyle 2\sigma N^{1/2}} centers the distribution, since at the limit, the eigenvalue distribution converges to the semicircular distribution with radius 2 σ N 1 / 2 {\displaystyle 2\sigma N^{1/2}} . The multiplication by N 1 / 6 {\displaystyle N^{1/6}} is used because the standard deviation of the distribution scales as N 1 / 6 {\displaystyle N^{-1/6}} (first derived in [9]).

For example:[10]

F 2 ( x ) = lim N Prob ( ( λ max 4 N ) N 1 / 6 x ) , {\displaystyle F_{2}(x)=\lim _{N\to \infty }\operatorname {Prob} \left((\lambda _{\max }-{\sqrt {4N}})N^{1/6}\leq x\right),}

where the matrix is sampled from the gaussian unitary ensemble with off-diagonal variance 1 {\displaystyle 1} .

The definition of the Tracy–Widom distributions F β {\displaystyle F_{\beta }} may be extended to all β > 0 {\displaystyle \beta >0} (Slide 56 in Edelman (2003), Ramírez, Rider & Virág (2006)).

One may naturally ask for the limit distribution of second-largest eigenvalues, third-largest eigenvalues, etc. They are known.[11][8]

Functional forms

Fredholm determinant

F 2 {\displaystyle F_{2}} can be given as the Fredholm determinant

F 2 ( s ) = det ( I A s ) = 1 + n = 1 ( 1 ) n n ! ( s , ) n det i , j = 1 , . . . , n [ A s ( x i , x j ) ] d x 1 d x n {\displaystyle F_{2}(s)=\det(I-A_{s})=1+\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n!}}\int _{(s,\infty )^{n}}\det _{i,j=1,...,n}[A_{s}(x_{i},x_{j})]dx_{1}\cdots dx_{n}}

of the kernel A s {\displaystyle A_{s}} ("Airy kernel") on square integrable functions on the half line ( s , ) {\displaystyle (s,\infty )} , given in terms of Airy functions Ai by

A s ( x , y ) = { A i ( x ) A i ( y ) A i ( x ) A i ( y ) x y if  x y A i ( x ) 2 x ( A i ( x ) ) 2 if  x = y {\displaystyle A_{s}(x,y)={\begin{cases}{\frac {\mathrm {Ai} (x)\mathrm {Ai} '(y)-\mathrm {Ai} '(x)\mathrm {Ai} (y)}{x-y}}\quad {\text{if }}x\neq y\\Ai'(x)^{2}-x(Ai(x))^{2}\quad {\text{if }}x=y\end{cases}}}

Painlevé transcendents

F 2 {\displaystyle F_{2}} can also be given as an integral

F 2 ( s ) = exp ( s ( x s ) q 2 ( x ) d x ) {\displaystyle F_{2}(s)=\exp \left(-\int _{s}^{\infty }(x-s)q^{2}(x)\,dx\right)}

in terms of a solution[note 1] of a Painlevé equation of type II

q ( s ) = s q ( s ) + 2 q ( s ) 3 {\displaystyle q^{\prime \prime }(s)=sq(s)+2q(s)^{3}\,}

with boundary condition q ( s ) Ai ( s ) , s . {\textstyle \displaystyle q(s)\sim {\textrm {Ai}}(s),s\to \infty .} This function q {\displaystyle q} is a Painlevé transcendent.

Other distributions are also expressible in terms of the same q {\displaystyle q} :[10]

F 1 ( s ) = exp ( 1 2 s q ( x ) d x ) ( F 2 ( s ) ) 1 / 2 F 4 ( s / 2 ) = cosh ( 1 2 s q ( x ) d x ) ( F 2 ( s ) ) 1 / 2 . {\displaystyle {\begin{aligned}F_{1}(s)&=\exp \left(-{\frac {1}{2}}\int _{s}^{\infty }q(x)\,dx\right)\,\left(F_{2}(s)\right)^{1/2}\\F_{4}(s/{\sqrt {2}})&=\cosh \left({\frac {1}{2}}\int _{s}^{\infty }q(x)\,dx\right)\,\left(F_{2}(s)\right)^{1/2}.\end{aligned}}}

Functional equations

Define

F ( x ) = exp ( 1 2 x ( y x ) q ( y ) 2 d y ) E ( x ) = exp ( 1 2 x q ( y ) d y ) {\displaystyle {\begin{aligned}F(x)&=\exp \left(-{\frac {1}{2}}\int _{x}^{\infty }(y-x)q(y)^{2}\,dy\right)\\E(x)&=\exp \left(-{\frac {1}{2}}\int _{x}^{\infty }q(y)\,dy\right)\end{aligned}}}
then[8]
F 1 ( x ) = E ( x ) F ( x ) , F 2 ( x ) = F ( x ) 2 , F 4 ( x 2 ) = 1 2 ( E ( x ) + 1 E ( x ) ) F ( x ) {\displaystyle F_{1}(x)=E(x)F(x),\quad F_{2}(x)=F(x)^{2},\quad \quad F_{4}\left({\frac {x}{\sqrt {2}}}\right)={\frac {1}{2}}\left(E(x)+{\frac {1}{E(x)}}\right)F(x)}

Occurrences

Other than in random matrix theory, the Tracy–Widom distributions occur in many other probability problems.[12]

Let l n {\displaystyle l_{n}} be the length of the longest increasing subsequence in a random permutation sampled uniformly from S n {\displaystyle S_{n}} , the permutation group on n elements. Then the cumulative distribution function of l n 2 N 1 / 2 N 1 / 6 {\displaystyle {\frac {l_{n}-2N^{1/2}}{N^{1/6}}}} converges to F 2 {\displaystyle F_{2}} .[13]

Asymptotics

Probability density function

Let f β ( x ) = F β ( x ) {\displaystyle f_{\beta }(x)=F_{\beta }'(x)} be the probability density function for the distribution, then[12]

f β ( x ) { e β 24 | x | 3 , x e 2 β 3 | x | 3 / 2 , x + {\displaystyle f_{\beta }(x)\sim {\begin{cases}e^{-{\frac {\beta }{24}}|x|^{3}},\quad x\to -\infty \\e^{-{\frac {2\beta }{3}}|x|^{3/2}},\quad x\to +\infty \end{cases}}}
In particular, we see that it is severely skewed to the right: it is much more likely for λ m a x {\displaystyle \lambda _{max}} to be much larger than 2 σ N {\displaystyle 2\sigma {\sqrt {N}}} than to be much smaller. This could be intuited by seeing that the limit distribution is the semicircle law, so there is "repulsion" from the bulk of the distribution, forcing λ m a x {\displaystyle \lambda _{max}} to be not much smaller than 2 σ N {\displaystyle 2\sigma {\sqrt {N}}} .

At the x {\displaystyle x\to -\infty } limit, a more precise expression is (equation 49 [12])

f β ( x ) τ β | x | ( β 2 + 4 6 β ) / 16 β exp [ β | x | 3 24 + 2 β 2 6 | x | 3 / 2 ] {\displaystyle f_{\beta }(x)\sim \tau _{\beta }|x|^{(\beta ^{2}+4-6\beta )/16\beta }\exp \left[-\beta {\frac {|x|^{3}}{24}}+{\sqrt {2}}{\frac {\beta -2}{6}}|x|^{3/2}\right]}
for some positive number τ β {\displaystyle \tau _{\beta }} that depends on β {\displaystyle \beta } .

Cumulative distribution function

At the x + {\displaystyle x\to +\infty } limit,[14]

F ( x ) = 1 e 4 3 x 3 / 2 32 π x 3 / 2 ( 1 35 24 x 3 / 2 + O ( x 3 ) ) , E ( x ) = 1 e 2 3 x 3 / 2 4 π x 3 / 2 ( 1 41 48 x 3 / 2 + O ( x 3 ) ) {\displaystyle {\begin{aligned}F(x)&=1-{\frac {e^{-{\frac {4}{3}}x^{3/2}}}{32\pi x^{3/2}}}{\biggl (}1-{\frac {35}{24x^{3/2}}}+{\cal {O}}(x^{-3}){\biggr )},\\E(x)&=1-{\frac {e^{-{\frac {2}{3}}x^{3/2}}}{4{\sqrt {\pi }}x^{3/2}}}{\biggl (}1-{\frac {41}{48x^{3/2}}}+{\cal {O}}(x^{-3}){\biggr )}\end{aligned}}}
and at the x {\displaystyle x\to -\infty } limit,
F ( x ) = 2 1 / 48 e 1 2 ζ ( 1 ) e 1 24 | x | 3 | x | 1 / 16 ( 1 + 3 2 7 | x | 3 + O ( | x | 6 ) ) E ( x ) = 1 2 1 / 4 e 1 3 2 | x | 3 / 2 ( 1 1 24 2 | x | 3 / 2 + O ( | x | 3 ) ) . {\displaystyle {\begin{aligned}F(x)&=2^{1/48}e^{{\frac {1}{2}}\zeta ^{\prime }(-1)}{\frac {e^{-{\frac {1}{24}}|x|^{3}}}{|x|^{1/16}}}\left(1+{\frac {3}{2^{7}|x|^{3}}}+O(|x|^{-6})\right)\\E(x)&={\frac {1}{2^{1/4}}}e^{-{\frac {1}{3{\sqrt {2}}}}|x|^{3/2}}{\Biggl (}1-{\frac {1}{24{\sqrt {2}}|x|^{3/2}}}+{\cal {O}}(|x|^{-3}){\Biggr )}.\end{aligned}}}
where ζ {\displaystyle \zeta } is the Riemann zeta function, and ζ ( 1 ) = 0.1654211437 {\displaystyle \zeta '(-1)=-0.1654211437} .

This allows derivation of x ± {\displaystyle x\to \pm \infty } behavior of F β {\displaystyle F_{\beta }} . For example,

1 F 2 ( x ) = 1 32 π x 3 / 2 e 4 x 3 / 2 / 3 ( 1 + O ( x 3 / 2 ) ) , F 2 ( x ) = 2 1 / 24 e ζ ( 1 ) x 1 / 8 e x 3 / 12 ( 1 + 3 2 6 x 3 + O ( x 6 ) ) . {\displaystyle {\begin{aligned}1-F_{2}(x)&={\frac {1}{32\pi x^{3/2}}}e^{-4x^{3/2}/3}(1+O(x^{-3/2})),\\F_{2}(-x)&={\frac {2^{1/24}e^{\zeta ^{\prime }(-1)}}{x^{1/8}}}e^{-x^{3}/12}{\biggl (}1+{\frac {3}{2^{6}x^{3}}}+O(x^{-6}){\biggr )}.\end{aligned}}}

Painlevé transcendent

The Painlevé transcendent has asymptotic expansion at x {\displaystyle x\to -\infty } (equation 4.1 of [15])

q ( x ) = x 2 ( 1 + 1 8 x 3 73 128 x 6 + 10657 1024 x 9 + O ( x 12 ) ) {\displaystyle q(x)={\sqrt {-{\frac {x}{2}}}}\left(1+{\frac {1}{8}}x^{-3}-{\frac {73}{128}}x^{-6}+{\frac {10657}{1024}}x^{-9}+O(x^{-12})\right)}
This is necessary for numerical computations, as the q x / 2 {\displaystyle q\sim {\sqrt {-x/2}}} solution is unstable: any deviation from it tends to drop it to the q x / 2 {\displaystyle q\sim -{\sqrt {-x/2}}} branch instead.[16]

Numerics

Numerical techniques for obtaining numerical solutions to the Painlevé equations of the types II and V, and numerically evaluating eigenvalue distributions of random matrices in the beta-ensembles were first presented by Edelman & Persson (2005) using MATLAB. These approximation techniques were further analytically justified in Bejan (2005) and used to provide numerical evaluation of Painlevé II and Tracy–Widom distributions (for β = 1 , 2 , 4 {\displaystyle \beta =1,2,4} ) in S-PLUS. These distributions have been tabulated in Bejan (2005) to four significant digits for values of the argument in increments of 0.01; a statistical table for p-values was also given in this work. Bornemann (2010) gave accurate and fast algorithms for the numerical evaluation of F β {\displaystyle F_{\beta }} and the density functions f β ( s ) = d F β / d s {\displaystyle f_{\beta }(s)=dF_{\beta }/ds} for β = 1 , 2 , 4 {\displaystyle \beta =1,2,4} . These algorithms can be used to compute numerically the mean, variance, skewness and excess kurtosis of the distributions F β {\displaystyle F_{\beta }} .[17]

β {\displaystyle \beta } Mean Variance Skewness Excess kurtosis
1 −1.2065335745820 1.607781034581 0.29346452408 0.1652429384
2 −1.771086807411 0.8131947928329 0.224084203610 0.0934480876
4 −2.306884893241 0.5177237207726 0.16550949435 0.0491951565

Functions for working with the Tracy–Widom laws are also presented in the R package 'RMTstat' by Johnstone et al. (2009) and MATLAB package 'RMLab' by Dieng (2006).

For a simple approximation based on a shifted gamma distribution see Chiani (2014).

Shen & Serkh (2022) developed a spectral algorithm for the eigendecomposition of the integral operator A s {\displaystyle A_{s}} , which can be used to rapidly evaluate Tracy–Widom distributions, or, more generally, the distributions of the k {\displaystyle k} th largest level at the soft edge scaling limit of Gaussian ensembles, to machine accuracy.

Tracy-Widom and KPZ universality

The Tracy-Widom distribution appears as a limit distribution in the universality class of the KPZ equation. For example it appears under t 1 / 3 {\displaystyle t^{1/3}} scaling of the one-dimensional KPZ equation with fixed time.[18]

See also

Footnotes

  1. ^ Mysterious Statistical Law May Finally Have an Explanation, wired.com 2014-10-27
  2. ^ Baik, Deift & Johansson (1999).
  3. ^ Sasamoto & Spohn (2010)
  4. ^ Johansson (2000); Tracy & Widom (2009)).
  5. ^ Majumdar & Nechaev (2005).
  6. ^ Johnstone (2007, 2008, 2009).
  7. ^ Domínguez-Molina (2017).
  8. ^ a b c Tracy, Craig A.; Widom, Harold (2009b). "The Distributions of Random Matrix Theory and their Applications". In Sidoravičius, Vladas (ed.). New Trends in Mathematical Physics. Dordrecht: Springer Netherlands. pp. 753–765. doi:10.1007/978-90-481-2810-5_48. ISBN 978-90-481-2810-5.
  9. ^ Forrester, P. J. (1993-08-09). "The spectrum edge of random matrix ensembles". Nuclear Physics B. 402 (3): 709–728. Bibcode:1993NuPhB.402..709F. doi:10.1016/0550-3213(93)90126-A. ISSN 0550-3213.
  10. ^ a b Tracy & Widom (1996).
  11. ^ Dieng, Momar (2005). "Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations". International Mathematics Research Notices. 2005 (37): 2263–2287. doi:10.1155/IMRN.2005.2263. ISSN 1687-0247.
  12. ^ a b c Majumdar, Satya N; Schehr, Grégory (2014-01-31). "Top eigenvalue of a random matrix: large deviations and third order phase transition". Journal of Statistical Mechanics: Theory and Experiment. 2014 (1): P01012. arXiv:1311.0580. Bibcode:2014JSMTE..01..012M. doi:10.1088/1742-5468/2014/01/p01012. ISSN 1742-5468. S2CID 119122520.
  13. ^ Baik, Deift & Johansson 1999
  14. ^ Baik, Jinho; Buckingham, Robert; DiFranco, Jeffery (2008-02-26). "Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function". Communications in Mathematical Physics. 280 (2): 463–497. arXiv:0704.3636. Bibcode:2008CMaPh.280..463B. doi:10.1007/s00220-008-0433-5. ISSN 0010-3616. S2CID 16324715.
  15. ^ Tracy, Craig A.; Widom, Harold (May 1993). "Level-spacing distributions and the Airy kernel". Physics Letters B. 305 (1–2): 115–118. arXiv:hep-th/9210074. Bibcode:1993PhLB..305..115T. doi:10.1016/0370-2693(93)91114-3. ISSN 0370-2693. S2CID 13912236.
  16. ^ Bender, Carl M.; Orszag, Steven A. (1999-10-29). Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media. pp. 163–165. ISBN 978-0-387-98931-0.
  17. ^ Su, Zhong-gen; Lei, Yu-huan; Shen, Tian (2021-03-01). "Tracy-Widom distribution, Airy2 process and its sample path properties". Applied Mathematics-A Journal of Chinese Universities. 36 (1): 128–158. doi:10.1007/s11766-021-4251-2. ISSN 1993-0445. S2CID 237903590.
  18. ^ Amir, Gideon; Corwin, Ivan; Quastel, Jeremy (2010). "Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions". Communications on Pure and Applied Mathematics. 64 (4). Wiley: 466--537. arXiv:1003.0443. doi:10.1002/cpa.20347.
  1. ^ called "Hastings–McLeod solution". Published by Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

References

  • Baik, J.; Deift, P.; Johansson, K. (1999), "On the distribution of the length of the longest increasing subsequence of random permutations", Journal of the American Mathematical Society, 12 (4): 1119–1178, arXiv:math/9810105, doi:10.1090/S0894-0347-99-00307-0, JSTOR 2646100, MR 1682248.
  • Bornemann, F. (2010), "On the numerical evaluation of distributions in random matrix theory: A review with an invitation to experimental mathematics", Markov Processes and Related Fields, 16 (4): 803–866, arXiv:0904.1581, Bibcode:2009arXiv0904.1581B.
  • Chiani, M. (2014), "Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy–Widom distribution", Journal of Multivariate Analysis, 129: 69–81, arXiv:1209.3394, doi:10.1016/j.jmva.2014.04.002, S2CID 15889291.
  • Sasamoto, Tomohiro; Spohn, Herbert (2010), "One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality", Physical Review Letters, 104 (23): 230602, arXiv:1002.1883, Bibcode:2010PhRvL.104w0602S, doi:10.1103/PhysRevLett.104.230602, PMID 20867222, S2CID 34945972
  • Deift, P. (2007), "Universality for mathematical and physical systems" (PDF), International Congress of Mathematicians (Madrid, 2006), European Mathematical Society, pp. 125–152, arXiv:math-ph/0603038, doi:10.4171/022-1/7, MR 2334189, S2CID 14133017.
  • Dieng, Momar (2006), RMLab, a MATLAB package for computing Tracy-Widom distributions and simulating random matrices.
  • Domínguez-Molina, J.Armando (2017), "The Tracy-Widom distribution is not infinitely divisible", Statistics & Probability Letters, 213 (1): 56–60, arXiv:1601.02898, doi:10.1016/j.spl.2016.11.029, S2CID 119676736.
  • Johansson, K. (2000), "Shape fluctuations and random matrices", Communications in Mathematical Physics, 209 (2): 437–476, arXiv:math/9903134, Bibcode:2000CMaPh.209..437J, doi:10.1007/s002200050027, S2CID 16291076.
  • Johansson, K. (2002), "Toeplitz determinants, random growth and determinantal processes" (PDF), Proc. International Congress of Mathematicians (Beijing, 2002), vol. 3, Beijing: Higher Ed. Press, pp. 53–62, MR 1957518.
  • Johnstone, I. M. (2007), "High dimensional statistical inference and random matrices" (PDF), International Congress of Mathematicians (Madrid, 2006), European Mathematical Society, pp. 307–333, arXiv:math/0611589, doi:10.4171/022-1/13, MR 2334195, S2CID 88524958.
  • Johnstone, I. M. (2008), "Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy–Widom limits and rates of convergence", Annals of Statistics, 36 (6): 2638–2716, arXiv:0803.3408, doi:10.1214/08-AOS605, PMC 2821031, PMID 20157626.
  • Johnstone, I. M. (2009), "Approximate null distribution of the largest root in multivariate analysis", Annals of Applied Statistics, 3 (4): 1616–1633, arXiv:1009.5854, doi:10.1214/08-AOAS220, PMC 2880335, PMID 20526465.
  • Majumdar, Satya N.; Nechaev, Sergei (2005), "Exact asymptotic results for the Bernoulli matching model of sequence alignment", Physical Review E, 72 (2): 020901, 4, arXiv:q-bio/0410012, Bibcode:2005PhRvE..72b0901M, doi:10.1103/PhysRevE.72.020901, MR 2177365, PMID 16196539, S2CID 11390762.
  • Patterson, N.; Price, A. L.; Reich, D. (2006), "Population structure and eigenanalysis", PLOS Genetics, 2 (12): e190, doi:10.1371/journal.pgen.0020190, PMC 1713260, PMID 17194218.
  • Prähofer, M.; Spohn, H. (2000), "Universal distributions for growing processes in 1+1 dimensions and random matrices", Physical Review Letters, 84 (21): 4882–4885, arXiv:cond-mat/9912264, Bibcode:2000PhRvL..84.4882P, doi:10.1103/PhysRevLett.84.4882, PMID 10990822, S2CID 20814566.
  • Shen, Z.; Serkh, K. (2022), "On the evaluation of the eigendecomposition of the Airy integral operator", Applied and Computational Harmonic Analysis, 57: 105–150, arXiv:2104.12958, doi:10.1016/j.acha.2021.11.003, S2CID 233407802.
  • Takeuchi, K. A.; Sano, M. (2010), "Universal fluctuations of growing interfaces: Evidence in turbulent liquid crystals", Physical Review Letters, 104 (23): 230601, arXiv:1001.5121, Bibcode:2010PhRvL.104w0601T, doi:10.1103/PhysRevLett.104.230601, PMID 20867221, S2CID 19315093
  • Takeuchi, K. A.; Sano, M.; Sasamoto, T.; Spohn, H. (2011), "Growing interfaces uncover universal fluctuations behind scale invariance", Scientific Reports, 1: 34, arXiv:1108.2118, Bibcode:2011NatSR...1E..34T, doi:10.1038/srep00034, PMC 3216521, PMID 22355553
  • Tracy, C. A.; Widom, H. (1993), "Level-spacing distributions and the Airy kernel", Physics Letters B, 305 (1–2): 115–118, arXiv:hep-th/9210074, Bibcode:1993PhLB..305..115T, doi:10.1016/0370-2693(93)91114-3, S2CID 119690132.
  • Tracy, C. A.; Widom, H. (1994), "Level-spacing distributions and the Airy kernel", Communications in Mathematical Physics, 159 (1): 151–174, arXiv:hep-th/9211141, Bibcode:1994CMaPh.159..151T, doi:10.1007/BF02100489, MR 1257246, S2CID 13912236.
  • Tracy, C. A.; Widom, H. (1996), "On orthogonal and symplectic matrix ensembles", Communications in Mathematical Physics, 177 (3): 727–754, arXiv:solv-int/9509007, Bibcode:1996CMaPh.177..727T, doi:10.1007/BF02099545, MR 1385083, S2CID 17398688
  • Tracy, C. A.; Widom, H. (2002), "Distribution functions for largest eigenvalues and their applications" (PDF), Proc. International Congress of Mathematicians (Beijing, 2002), vol. 1, Beijing: Higher Ed. Press, pp. 587–596, MR 1989209.
  • Tracy, C. A.; Widom, H. (2009), "Asymptotics in ASEP with step initial condition", Communications in Mathematical Physics, 290 (1): 129–154, arXiv:0807.1713, Bibcode:2009CMaPh.290..129T, doi:10.1007/s00220-009-0761-0, S2CID 14730756.

Further reading

  • Bejan, Andrei Iu. (2005), Largest eigenvalues and sample covariance matrices. Tracy–Widom and Painleve II: Computational aspects and realization in S-Plus with applications (PDF), M.Sc. dissertation, Department of Statistics, The University of Warwick.
  • Edelman, A.; Persson, P.-O. (2005), Numerical Methods for Eigenvalue Distributions of Random Matrices, arXiv:math-ph/0501068, Bibcode:2005math.ph...1068E.
  • Edelman, A. (2003), Stochastic Differential Equations and Random Matrices, SIAM Applied Linear Algebra.
  • Ramírez, J. A.; Rider, B.; Virág, B. (2006), "Beta ensembles, stochastic Airy spectrum, and a diffusion", Journal of the American Mathematical Society, 24 (4): 919–944, arXiv:math/0607331, Bibcode:2006math......7331R, doi:10.1090/S0894-0347-2011-00703-0, S2CID 10226881.

External links

  • Kuijlaars, Universality of distribution functions in random matrix theory (PDF).
  • Tracy, C. A.; Widom, H., The distributions of random matrix theory and their applications (PDF).
  • Johnstone, Iain; Ma, Zongming; Perry, Patrick; Shahram, Morteza (2009), Package 'RMTstat' (PDF).
  • At the Far Ends of a New Universal Law, Quanta Magazine
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons