Wrapped asymmetric Laplace distribution

Wrapped asymmetric Laplace distribution
Probability density function

Wrapped asymmetric Laplace PDF with m = 0.Note that the κ =  2 and 1/2 curves are mirror images about θ=π
Parameters

m {\displaystyle m} location ( 0 m < 2 π ) {\displaystyle (0\leq m<2\pi )}
λ > 0 {\displaystyle \lambda >0} scale (real)

κ > 0 {\displaystyle \kappa >0} asymmetry (real)
Support 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi }
PDF (see article)
Mean m {\displaystyle m} (circular)
Variance 1 λ 2 ( 1 κ 2 + λ 2 ) ( κ 2 + λ 2 ) {\displaystyle 1-{\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}} (circular)
CF λ 2 e i m n ( n i λ / κ ) ( n + i λ κ ) {\displaystyle {\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

Definition

The probability density function of the wrapped asymmetric Laplace distribution is:[1]

f W A L ( θ ; m , λ , κ ) = k = f A L ( θ + 2 π k , m , λ , κ ) = κ λ κ 2 + 1 { e ( θ m ) λ κ 1 e 2 π λ κ e ( θ m ) λ / κ 1 e 2 π λ / κ if  θ m e ( θ m ) λ κ e 2 π λ κ 1 e ( θ m ) λ / κ e 2 π λ / κ 1 if  θ < m {\displaystyle {\begin{aligned}f_{WAL}(\theta ;m,\lambda ,\kappa )&=\sum _{k=-\infty }^{\infty }f_{AL}(\theta +2\pi k,m,\lambda ,\kappa )\\[10pt]&={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{-(\theta -m)\lambda \kappa }}{1-e^{-2\pi \lambda \kappa }}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{1-e^{2\pi \lambda /\kappa }}}&{\text{if }}\theta \geq m\\[12pt]{\dfrac {e^{-(\theta -m)\lambda \kappa }}{e^{2\pi \lambda \kappa }-1}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{e^{-2\pi \lambda /\kappa }-1}}&{\text{if }}\theta <m\end{cases}}\end{aligned}}}

where f A L {\displaystyle f_{AL}} is the asymmetric Laplace distribution. The angular parameter is restricted to 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } . The scale parameter is λ > 0 {\displaystyle \lambda >0} which is the scale parameter of the unwrapped distribution and κ > 0 {\displaystyle \kappa >0} is the asymmetry parameter of the unwrapped distribution.

The cumulative distribution function F W A L {\displaystyle F_{WAL}} is therefore:

F W A L ( θ ; m , λ , κ ) = κ λ κ 2 + 1 { e m λ κ ( 1 e θ λ κ ) λ κ ( e 2 π λ κ 1 ) + κ e m λ / κ ( 1 e θ λ / κ ) λ ( e 2 π λ / κ 1 ) if  θ m 1 e ( θ m ) λ κ λ κ ( 1 e 2 π λ κ ) + κ ( 1 e ( θ m ) λ / κ ) λ ( 1 e 2 π λ / κ ) + e m λ κ 1 λ κ ( e 2 π λ κ 1 ) + κ ( e m λ / κ 1 ) λ ( e 2 π λ / κ 1 ) if  θ > m {\displaystyle F_{WAL}(\theta ;m,\lambda ,\kappa )={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{m\lambda \kappa }(1-e^{-\theta \lambda \kappa })}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa e^{-m\lambda /\kappa }(1-e^{\theta \lambda /\kappa })}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta \leq m\\{\dfrac {1-e^{-(\theta -m)\lambda \kappa }}{\lambda \kappa (1-e^{-2\pi \lambda \kappa })}}+{\dfrac {\kappa (1-e^{(\theta -m)\lambda /\kappa })}{\lambda (1-e^{2\pi \lambda /\kappa })}}+{\dfrac {e^{m\lambda \kappa }-1}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa (e^{-m\lambda /\kappa }-1)}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta >m\end{cases}}}

Characteristic function

The characteristic function of the wrapped asymmetric Laplace is just the characteristic function of the asymmetric Laplace function evaluated at integer arguments:

φ n ( m , λ , κ ) = λ 2 e i m n ( n i λ / κ ) ( n + i λ κ ) {\displaystyle \varphi _{n}(m,\lambda ,\kappa )={\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}

which yields an alternate expression for the wrapped asymmetric Laplace PDF in terms of the circular variable z=ei(θ-m) valid for all real θ and m:

f W A L ( z ; m , λ , κ ) = 1 2 π n = φ n ( 0 , λ , κ ) z n = λ π ( κ + 1 / κ ) { Im ( Φ ( z , 1 , i λ κ ) Φ ( z , 1 , i λ / κ ) ) 1 2 π if  z 1 coth ( π λ κ ) + coth ( π λ / κ ) if  z = 1 {\displaystyle {\begin{aligned}f_{WAL}(z;m,\lambda ,\kappa )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }\varphi _{n}(0,\lambda ,\kappa )z^{-n}\\[10pt]&={\frac {\lambda }{\pi (\kappa +1/\kappa )}}{\begin{cases}{\textrm {Im}}\left(\Phi (z,1,-i\lambda \kappa )-\Phi \left(z,1,i\lambda /\kappa \right)\right)-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]\coth(\pi \lambda \kappa )+\coth(\pi \lambda /\kappa )&{\text{if }}z=1\end{cases}}\end{aligned}}}

where Φ ( ) {\displaystyle \Phi ()} is the Lerch transcendent function and coth() is the hyperbolic cotangent function.

Circular moments

In terms of the circular variable z = e i θ {\displaystyle z=e^{i\theta }} the circular moments of the wrapped asymmetric Laplace distribution are the characteristic function of the asymmetric Laplace distribution evaluated at integer arguments:

z n = φ n ( m , λ , κ ) {\displaystyle \langle z^{n}\rangle =\varphi _{n}(m,\lambda ,\kappa )}

The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

z = λ 2 e i m ( 1 i λ / κ ) ( 1 + i λ κ ) {\displaystyle \langle z\rangle ={\frac {\lambda ^{2}e^{im}}{\left(1-i\lambda /\kappa \right)\left(1+i\lambda \kappa \right)}}}

The mean angle is ( π θ π ) {\displaystyle (-\pi \leq \langle \theta \rangle \leq \pi )}

θ = arg ( z ) = arg ( e i m ) {\displaystyle \langle \theta \rangle =\arg(\,\langle z\rangle \,)=\arg(e^{im})}

and the length of the mean resultant is

R = | z | = λ 2 ( 1 κ 2 + λ 2 ) ( κ 2 + λ 2 ) . {\displaystyle R=|\langle z\rangle |={\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}.}

The circular variance is then 1 − R

Generation of random variates

If X is a random variate drawn from an asymmetric Laplace distribution (ALD), then Z = e i X {\displaystyle Z=e^{iX}} will be a circular variate drawn from the wrapped ALD, and, θ = arg ( Z ) + π {\displaystyle \theta =\arg(Z)+\pi } will be an angular variate drawn from the wrapped ALD with 0 < θ 2 π {\displaystyle 0<\theta \leq 2\pi } .

Since the ALD is the distribution of the difference of two variates drawn from the exponential distribution, it follows that if Z1 is drawn from a wrapped exponential distribution with mean m1 and rate λ/κ and Z2 is drawn from a wrapped exponential distribution with mean m2 and rate λκ, then Z1/Z2 will be a circular variate drawn from the wrapped ALD with parameters ( m1 - m2 , λ, κ) and θ = arg ( Z 1 / Z 2 ) + π {\displaystyle \theta =\arg(Z_{1}/Z_{2})+\pi } will be an angular variate drawn from that wrapped ALD with π < θ π {\displaystyle -\pi <\theta \leq \pi } .

See also

  • Wrapped distribution
  • Directional statistics

References

  1. ^ Jammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004). "New Families of Wrapped Distributions for Modeling Skew Circular Data" (PDF). Communications in Statistics – Theory and Methods. 33 (9): 2059–2074. doi:10.1081/STA-200026570. Retrieved 2011-06-13.
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)Directional
Univariate (circular) directional
Circular uniform
univariate von Mises
wrapped normal
wrapped Cauchy
wrapped exponential
wrapped asymmetric Laplace
wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons