Lomax distribution

Heavy-tail probability distribution
Lomax
Probability density function
PDF of the Lomax distribution
Cumulative distribution function
Lomax distribution CDF plot
Parameters
  • α > 0 {\displaystyle \alpha >0} shape (real)
  • λ > 0 {\displaystyle \lambda >0} scale (real)
Support x 0 {\displaystyle x\geq 0}
PDF α λ [ 1 + x λ ] ( α + 1 ) {\displaystyle {\alpha \over \lambda }\left[{1+{x \over \lambda }}\right]^{-(\alpha +1)}}
CDF 1 [ 1 + x λ ] α {\displaystyle 1-\left[{1+{x \over \lambda }}\right]^{-\alpha }}
Quantile λ [ ( 1 p ) 1 α 1 ] {\displaystyle \lambda \left[\left(1-p\right)^{-{\frac {1}{\alpha }}}-1\right]}
Mean λ α 1  for  α > 1 {\displaystyle {\lambda \over {\alpha -1}}{\text{ for }}\alpha >1} ; undefined otherwise
Median λ ( 2 α 1 ) {\displaystyle \lambda \left({\sqrt[{\alpha }]{2}}-1\right)}
Mode 0
Variance { λ 2 α ( α 1 ) 2 ( α 2 ) α > 2 1 < α 2 Undefined otherwise {\displaystyle {\begin{cases}{{\lambda ^{2}\alpha } \over {(\alpha -1)^{2}(\alpha -2)}}&\alpha >2\\\infty &1<\alpha \leq 2\\{\text{Undefined}}&{\text{otherwise}}\end{cases}}}
Skewness 2 ( 1 + α ) α 3 α 2 α  for  α > 3 {\displaystyle {\frac {2(1+\alpha )}{\alpha -3}}\,{\sqrt {\frac {\alpha -2}{\alpha }}}{\text{ for }}\alpha >3\,}
Excess kurtosis 6 ( α 3 + α 2 6 α 2 ) α ( α 3 ) ( α 4 )  for  α > 4 {\displaystyle {\frac {6(\alpha ^{3}+\alpha ^{2}-6\alpha -2)}{\alpha (\alpha -3)(\alpha -4)}}{\text{ for }}\alpha >4\,}

The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling.[1][2][3] It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.[4]

Characterization

Probability density function

The probability density function (pdf) for the Lomax distribution is given by

p ( x ) = α λ [ 1 + x λ ] ( α + 1 ) , x 0 , {\displaystyle p(x)={\alpha \over \lambda }\left[{1+{x \over \lambda }}\right]^{-(\alpha +1)},\qquad x\geq 0,}

with shape parameter α > 0 {\displaystyle \alpha >0} and scale parameter λ > 0 {\displaystyle \lambda >0} . The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is:

p ( x ) = α λ α ( x + λ ) α + 1 {\displaystyle p(x)={{\alpha \lambda ^{\alpha }} \over {(x+\lambda )^{\alpha +1}}}} .

Non-central moments

The ν {\displaystyle \nu } th non-central moment E [ X ν ] {\displaystyle E\left[X^{\nu }\right]} exists only if the shape parameter α {\displaystyle \alpha } strictly exceeds ν {\displaystyle \nu } , when the moment has the value

E ( X ν ) = λ ν Γ ( α ν ) Γ ( 1 + ν ) Γ ( α ) {\displaystyle E\left(X^{\nu }\right)={\frac {\lambda ^{\nu }\Gamma (\alpha -\nu )\Gamma (1+\nu )}{\Gamma (\alpha )}}}

Related distributions

Relation to the Pareto distribution

The Lomax distribution is a Pareto Type I distribution shifted so that its support begins at zero. Specifically:

If  Y Pareto ( x m = λ , α ) ,  then  Y x m Lomax ( α , λ ) . {\displaystyle {\text{If }}Y\sim {\mbox{Pareto}}(x_{m}=\lambda ,\alpha ),{\text{ then }}Y-x_{m}\sim {\mbox{Lomax}}(\alpha ,\lambda ).}

The Lomax distribution is a Pareto Type II distribution with xm=λ and μ=0:[5]

If  X Lomax ( α , λ )  then  X P(II) ( x m = λ , α , μ = 0 ) . {\displaystyle {\text{If }}X\sim {\mbox{Lomax}}(\alpha ,\lambda ){\text{ then }}X\sim {\text{P(II)}}\left(x_{m}=\lambda ,\alpha ,\mu =0\right).}

Relation to the generalized Pareto distribution

The Lomax distribution is a special case of the generalized Pareto distribution. Specifically:

μ = 0 ,   ξ = 1 α ,   σ = λ α . {\displaystyle \mu =0,~\xi ={1 \over \alpha },~\sigma ={\lambda \over \alpha }.}

Relation to the beta prime distribution

The Lomax distribution with scale parameter λ = 1 is a special case of the beta prime distribution. If X has a Lomax distribution, then X λ β ( 1 , α ) {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )} .

Relation to the F distribution

The Lomax distribution with shape parameter α = 1 and scale parameter λ = 1 has density f ( x ) = 1 ( 1 + x ) 2 {\displaystyle f(x)={\frac {1}{(1+x)^{2}}}} , the same distribution as an F(2,2) distribution. This is the distribution of the ratio of two independent and identically distributed random variables with exponential distributions.

Relation to the q-exponential distribution

The Lomax distribution is a special case of the q-exponential distribution. The q-exponential extends this distribution to support on a bounded interval. The Lomax parameters are given by:

α = 2 q q 1 ,   λ = 1 λ q ( q 1 ) . {\displaystyle \alpha ={{2-q} \over {q-1}},~\lambda ={1 \over \lambda _{q}(q-1)}.}

Relation to the (log-) logistic distribution

The logarithm of a Lomax(shape = 1.0, scale = λ)-distributed variable follows a logistic distribution with location log(λ) and scale 1.0. This implies that a Lomax(shape = 1.0, scale = λ)-distribution equals a log-logistic distribution with shape β = 1.0 and scale α = log(λ).

Gamma-exponential (scale-) mixture connection

The Lomax distribution arises as a mixture of exponential distributions where the mixing distribution of the rate is a gamma distribution. If λ|k,θ ~ Gamma(shape = k, scale = θ) and X|λ ~ Exponential(rate = λ) then the marginal distribution of X|k,θ is Lomax(shape = k, scale = 1/θ). Since the rate parameter may equivalently be reparameterized to a scale parameter, the Lomax distribution constitutes a scale mixture of exponentials (with the exponential scale parameter following an inverse-gamma distribution).

See also

References

  1. ^ Lomax, K. S. (1954) "Business Failures; Another example of the analysis of failure data". Journal of the American Statistical Association, 49, 847–852. JSTOR 2281544
  2. ^ Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "20 Pareto distributions". Continuous univariate distributions. Vol. 1 (2nd ed.). New York: Wiley. p. 573.
  3. ^ J. Chen, J., Addie, R. G., Zukerman. M., Neame, T. D. (2015) "Performance Evaluation of a Queue Fed by a Poisson Lomax Burst Process", IEEE Communications Letters, 19, 3, 367-370.
  4. ^ Van Hauwermeiren M and Vose D (2009). A Compendium of Distributions [ebook]. Vose Software, Ghent, Belgium. Available at www.vosesoftware.com.
  5. ^ Kleiber, Christian; Kotz, Samuel (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, vol. 470, John Wiley & Sons, p. 60, ISBN 9780471457169.
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons