Bernoulli distribution

Probability distribution modeling a coin toss which need not be fair

Bernoulli distribution
Probability mass function
Funzione di densità di una variabile casuale normale

Three examples of Bernoulli distribution:

   P ( x = 0 ) = 0 . 2 {\displaystyle P(x=0)=0{.}2} and P ( x = 1 ) = 0 . 8 {\displaystyle P(x=1)=0{.}8}
   P ( x = 0 ) = 0 . 8 {\displaystyle P(x=0)=0{.}8} and P ( x = 1 ) = 0 . 2 {\displaystyle P(x=1)=0{.}2}
   P ( x = 0 ) = 0 . 5 {\displaystyle P(x=0)=0{.}5} and P ( x = 1 ) = 0 . 5 {\displaystyle P(x=1)=0{.}5}
Parameters

0 p 1 {\displaystyle 0\leq p\leq 1}

q = 1 p {\displaystyle q=1-p}
Support k { 0 , 1 } {\displaystyle k\in \{0,1\}}
PMF { q = 1 p if  k = 0 p if  k = 1 {\displaystyle {\begin{cases}q=1-p&{\text{if }}k=0\\p&{\text{if }}k=1\end{cases}}}
CDF { 0 if  k < 0 1 p if  0 k < 1 1 if  k 1 {\displaystyle {\begin{cases}0&{\text{if }}k<0\\1-p&{\text{if }}0\leq k<1\\1&{\text{if }}k\geq 1\end{cases}}}
Mean p {\displaystyle p}
Median { 0 if  p < 1 / 2 [ 0 , 1 ] if  p = 1 / 2 1 if  p > 1 / 2 {\displaystyle {\begin{cases}0&{\text{if }}p<1/2\\\left[0,1\right]&{\text{if }}p=1/2\\1&{\text{if }}p>1/2\end{cases}}}
Mode { 0 if  p < 1 / 2 0 , 1 if  p = 1 / 2 1 if  p > 1 / 2 {\displaystyle {\begin{cases}0&{\text{if }}p<1/2\\0,1&{\text{if }}p=1/2\\1&{\text{if }}p>1/2\end{cases}}}
Variance p ( 1 p ) = p q {\displaystyle p(1-p)=pq}
MAD 2 p ( 1 p ) = 2 p q {\displaystyle 2p(1-p)=2pq}
Skewness q p p q {\displaystyle {\frac {q-p}{\sqrt {pq}}}}
Excess kurtosis 1 6 p q p q {\displaystyle {\frac {1-6pq}{pq}}}
Entropy q ln q p ln p {\displaystyle -q\ln q-p\ln p}
MGF q + p e t {\displaystyle q+pe^{t}}
CF q + p e i t {\displaystyle q+pe^{it}}
PGF q + p z {\displaystyle q+pz}
Fisher information 1 p q {\displaystyle {\frac {1}{pq}}}
Part of a series on statistics
Probability theory
  • Probability
    • Axioms
  • Determinism
    • System
  • Indeterminism
  • Randomness
  • v
  • t
  • e

In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,[1] is the discrete probability distribution of a random variable which takes the value 1 with probability p {\displaystyle p} and the value 0 with probability q = 1 p {\displaystyle q=1-p} . Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are Boolean-valued: a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q. It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have p 1 / 2. {\displaystyle p\neq 1/2.}

The Bernoulli distribution is a special case of the binomial distribution where a single trial is conducted (so n would be 1 for such a binomial distribution). It is also a special case of the two-point distribution, for which the possible outcomes need not be 0 and 1. [2]

Properties

If X {\displaystyle X} is a random variable with a Bernoulli distribution, then:

Pr ( X = 1 ) = p = 1 Pr ( X = 0 ) = 1 q . {\displaystyle \Pr(X=1)=p=1-\Pr(X=0)=1-q.}

The probability mass function f {\displaystyle f} of this distribution, over possible outcomes k, is

f ( k ; p ) = { p if  k = 1 , q = 1 p if  k = 0. {\displaystyle f(k;p)={\begin{cases}p&{\text{if }}k=1,\\q=1-p&{\text{if }}k=0.\end{cases}}} [3]

This can also be expressed as

f ( k ; p ) = p k ( 1 p ) 1 k for  k { 0 , 1 } {\displaystyle f(k;p)=p^{k}(1-p)^{1-k}\quad {\text{for }}k\in \{0,1\}}

or as

f ( k ; p ) = p k + ( 1 p ) ( 1 k ) for  k { 0 , 1 } . {\displaystyle f(k;p)=pk+(1-p)(1-k)\quad {\text{for }}k\in \{0,1\}.}

The Bernoulli distribution is a special case of the binomial distribution with n = 1. {\displaystyle n=1.} [4]

The kurtosis goes to infinity for high and low values of p , {\displaystyle p,} but for p = 1 / 2 {\displaystyle p=1/2} the two-point distributions including the Bernoulli distribution have a lower excess kurtosis, namely −2, than any other probability distribution.

The Bernoulli distributions for 0 p 1 {\displaystyle 0\leq p\leq 1} form an exponential family.

The maximum likelihood estimator of p {\displaystyle p} based on a random sample is the sample mean.

The probability mass distribution function of a Bernoulli experiment along with its corresponding cumulative distribution function.

Mean

The expected value of a Bernoulli random variable X {\displaystyle X} is

E [ X ] = p {\displaystyle \operatorname {E} [X]=p}

This is due to the fact that for a Bernoulli distributed random variable X {\displaystyle X} with Pr ( X = 1 ) = p {\displaystyle \Pr(X=1)=p} and Pr ( X = 0 ) = q {\displaystyle \Pr(X=0)=q} we find

E [ X ] = Pr ( X = 1 ) 1 + Pr ( X = 0 ) 0 = p 1 + q 0 = p . {\displaystyle \operatorname {E} [X]=\Pr(X=1)\cdot 1+\Pr(X=0)\cdot 0=p\cdot 1+q\cdot 0=p.} [3]

Variance

The variance of a Bernoulli distributed X {\displaystyle X} is

Var [ X ] = p q = p ( 1 p ) {\displaystyle \operatorname {Var} [X]=pq=p(1-p)}

We first find

E [ X 2 ] = Pr ( X = 1 ) 1 2 + Pr ( X = 0 ) 0 2 = p 1 2 + q 0 2 = p = E [ X ] {\displaystyle \operatorname {E} [X^{2}]=\Pr(X=1)\cdot 1^{2}+\Pr(X=0)\cdot 0^{2}=p\cdot 1^{2}+q\cdot 0^{2}=p=\operatorname {E} [X]}

From this follows

Var [ X ] = E [ X 2 ] E [ X ] 2 = E [ X ] E [ X ] 2 = p p 2 = p ( 1 p ) = p q {\displaystyle \operatorname {Var} [X]=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}=\operatorname {E} [X]-\operatorname {E} [X]^{2}=p-p^{2}=p(1-p)=pq} [3]

With this result it is easy to prove that, for any Bernoulli distribution, its variance will have a value inside [ 0 , 1 / 4 ] {\displaystyle [0,1/4]} .

Skewness

The skewness is q p p q = 1 2 p p q {\displaystyle {\frac {q-p}{\sqrt {pq}}}={\frac {1-2p}{\sqrt {pq}}}} . When we take the standardized Bernoulli distributed random variable X E [ X ] Var [ X ] {\displaystyle {\frac {X-\operatorname {E} [X]}{\sqrt {\operatorname {Var} [X]}}}} we find that this random variable attains q p q {\displaystyle {\frac {q}{\sqrt {pq}}}} with probability p {\displaystyle p} and attains p p q {\displaystyle -{\frac {p}{\sqrt {pq}}}} with probability q {\displaystyle q} . Thus we get

γ 1 = E [ ( X E [ X ] Var [ X ] ) 3 ] = p ( q p q ) 3 + q ( p p q ) 3 = 1 p q 3 ( p q 3 q p 3 ) = p q p q 3 ( q p ) = q p p q . {\displaystyle {\begin{aligned}\gamma _{1}&=\operatorname {E} \left[\left({\frac {X-\operatorname {E} [X]}{\sqrt {\operatorname {Var} [X]}}}\right)^{3}\right]\\&=p\cdot \left({\frac {q}{\sqrt {pq}}}\right)^{3}+q\cdot \left(-{\frac {p}{\sqrt {pq}}}\right)^{3}\\&={\frac {1}{{\sqrt {pq}}^{3}}}\left(pq^{3}-qp^{3}\right)\\&={\frac {pq}{{\sqrt {pq}}^{3}}}(q-p)\\&={\frac {q-p}{\sqrt {pq}}}.\end{aligned}}}

Higher moments and cumulants

The raw moments are all equal due to the fact that 1 k = 1 {\displaystyle 1^{k}=1} and 0 k = 0 {\displaystyle 0^{k}=0} .

E [ X k ] = Pr ( X = 1 ) 1 k + Pr ( X = 0 ) 0 k = p 1 + q 0 = p = E [ X ] . {\displaystyle \operatorname {E} [X^{k}]=\Pr(X=1)\cdot 1^{k}+\Pr(X=0)\cdot 0^{k}=p\cdot 1+q\cdot 0=p=\operatorname {E} [X].}

The central moment of order k {\displaystyle k} is given by

μ k = ( 1 p ) ( p ) k + p ( 1 p ) k . {\displaystyle \mu _{k}=(1-p)(-p)^{k}+p(1-p)^{k}.}

The first six central moments are

μ 1 = 0 , μ 2 = p ( 1 p ) , μ 3 = p ( 1 p ) ( 1 2 p ) , μ 4 = p ( 1 p ) ( 1 3 p ( 1 p ) ) , μ 5 = p ( 1 p ) ( 1 2 p ) ( 1 2 p ( 1 p ) ) , μ 6 = p ( 1 p ) ( 1 5 p ( 1 p ) ( 1 p ( 1 p ) ) ) . {\displaystyle {\begin{aligned}\mu _{1}&=0,\\\mu _{2}&=p(1-p),\\\mu _{3}&=p(1-p)(1-2p),\\\mu _{4}&=p(1-p)(1-3p(1-p)),\\\mu _{5}&=p(1-p)(1-2p)(1-2p(1-p)),\\\mu _{6}&=p(1-p)(1-5p(1-p)(1-p(1-p))).\end{aligned}}}

The higher central moments can be expressed more compactly in terms of μ 2 {\displaystyle \mu _{2}} and μ 3 {\displaystyle \mu _{3}}

μ 4 = μ 2 ( 1 3 μ 2 ) , μ 5 = μ 3 ( 1 2 μ 2 ) , μ 6 = μ 2 ( 1 5 μ 2 ( 1 μ 2 ) ) . {\displaystyle {\begin{aligned}\mu _{4}&=\mu _{2}(1-3\mu _{2}),\\\mu _{5}&=\mu _{3}(1-2\mu _{2}),\\\mu _{6}&=\mu _{2}(1-5\mu _{2}(1-\mu _{2})).\end{aligned}}}

The first six cumulants are

κ 1 = p , κ 2 = μ 2 , κ 3 = μ 3 , κ 4 = μ 2 ( 1 6 μ 2 ) , κ 5 = μ 3 ( 1 12 μ 2 ) , κ 6 = μ 2 ( 1 30 μ 2 ( 1 4 μ 2 ) ) . {\displaystyle {\begin{aligned}\kappa _{1}&=p,\\\kappa _{2}&=\mu _{2},\\\kappa _{3}&=\mu _{3},\\\kappa _{4}&=\mu _{2}(1-6\mu _{2}),\\\kappa _{5}&=\mu _{3}(1-12\mu _{2}),\\\kappa _{6}&=\mu _{2}(1-30\mu _{2}(1-4\mu _{2})).\end{aligned}}}

Related distributions

The Bernoulli distribution is simply B ( 1 , p ) {\displaystyle \operatorname {B} (1,p)} , also written as B e r n o u l l i ( p ) . {\textstyle \mathrm {Bernoulli} (p).}

See also

References

  1. ^ Uspensky, James Victor (1937). Introduction to Mathematical Probability. New York: McGraw-Hill. p. 45. OCLC 996937.
  2. ^ Dekking, Frederik; Kraaikamp, Cornelis; Lopuhaä, Hendrik; Meester, Ludolf (9 October 2010). A Modern Introduction to Probability and Statistics (1 ed.). Springer London. pp. 43–48. ISBN 9781849969529.
  3. ^ a b c d Bertsekas, Dimitri P. (2002). Introduction to Probability. Tsitsiklis, John N., Τσιτσικλής, Γιάννης Ν. Belmont, Mass.: Athena Scientific. ISBN 188652940X. OCLC 51441829.
  4. ^ McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. Section 4.2.2. ISBN 0-412-31760-5.
  5. ^ Orloff, Jeremy; Bloom, Jonathan. "Conjugate priors: Beta and normal" (PDF). math.mit.edu. Retrieved October 20, 2023.

Further reading

  • Johnson, N. L.; Kotz, S.; Kemp, A. (1993). Univariate Discrete Distributions (2nd ed.). Wiley. ISBN 0-471-54897-9.
  • Peatman, John G. (1963). Introduction to Applied Statistics. New York: Harper & Row. pp. 162–171.

External links

Wikimedia Commons has media related to Bernoulli distribution.
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons