Noncentral chi distribution

Noncentral chi
Parameters

k > 0 {\displaystyle k>0\,} degrees of freedom

λ > 0 {\displaystyle \lambda >0\,}
Support x [ 0 ; + ) {\displaystyle x\in [0;+\infty )\,}
PDF e ( x 2 + λ 2 ) / 2 x k λ ( λ x ) k / 2 I k / 2 1 ( λ x ) {\displaystyle {\frac {e^{-(x^{2}+\lambda ^{2})/2}x^{k}\lambda }{(\lambda x)^{k/2}}}I_{k/2-1}(\lambda x)}
CDF 1 Q k 2 ( λ , x ) {\displaystyle 1-Q_{\frac {k}{2}}\left(\lambda ,x\right)} with Marcum Q-function Q M ( a , b ) {\displaystyle Q_{M}(a,b)}
Mean π 2 L 1 / 2 ( k / 2 1 ) ( λ 2 2 ) {\displaystyle {\sqrt {\frac {\pi }{2}}}L_{1/2}^{(k/2-1)}\left({\frac {-\lambda ^{2}}{2}}\right)\,}
Variance k + λ 2 μ 2 {\displaystyle k+\lambda ^{2}-\mu ^{2}} , where μ {\displaystyle \mu } is the mean

In probability theory and statistics, the noncentral chi distribution[1] is a noncentral generalization of the chi distribution. It is also known as the generalized Rayleigh distribution.

Definition

If X i {\displaystyle X_{i}} are k independent, normally distributed random variables with means μ i {\displaystyle \mu _{i}} and variances σ i 2 {\displaystyle \sigma _{i}^{2}} , then the statistic

Z = i = 1 k ( X i σ i ) 2 {\displaystyle Z={\sqrt {\sum _{i=1}^{k}\left({\frac {X_{i}}{\sigma _{i}}}\right)^{2}}}}

is distributed according to the noncentral chi distribution. The noncentral chi distribution has two parameters: k {\displaystyle k} which specifies the number of degrees of freedom (i.e. the number of X i {\displaystyle X_{i}} ), and λ {\displaystyle \lambda } which is related to the mean of the random variables X i {\displaystyle X_{i}} by:

λ = i = 1 k ( μ i σ i ) 2 {\displaystyle \lambda ={\sqrt {\sum _{i=1}^{k}\left({\frac {\mu _{i}}{\sigma _{i}}}\right)^{2}}}}

Properties

Probability density function

The probability density function (pdf) is

f ( x ; k , λ ) = e ( x 2 + λ 2 ) / 2 x k λ ( λ x ) k / 2 I k / 2 1 ( λ x ) {\displaystyle f(x;k,\lambda )={\frac {e^{-(x^{2}+\lambda ^{2})/2}x^{k}\lambda }{(\lambda x)^{k/2}}}I_{k/2-1}(\lambda x)}

where I ν ( z ) {\displaystyle I_{\nu }(z)} is a modified Bessel function of the first kind.

Raw moments

The first few raw moments are:

μ 1 = π 2 L 1 / 2 ( k / 2 1 ) ( λ 2 2 ) {\displaystyle \mu _{1}^{'}={\sqrt {\frac {\pi }{2}}}L_{1/2}^{(k/2-1)}\left({\frac {-\lambda ^{2}}{2}}\right)}
μ 2 = k + λ 2 {\displaystyle \mu _{2}^{'}=k+\lambda ^{2}}
μ 3 = 3 π 2 L 3 / 2 ( k / 2 1 ) ( λ 2 2 ) {\displaystyle \mu _{3}^{'}=3{\sqrt {\frac {\pi }{2}}}L_{3/2}^{(k/2-1)}\left({\frac {-\lambda ^{2}}{2}}\right)}
μ 4 = ( k + λ 2 ) 2 + 2 ( k + 2 λ 2 ) {\displaystyle \mu _{4}^{'}=(k+\lambda ^{2})^{2}+2(k+2\lambda ^{2})}

where L n ( a ) ( z ) {\displaystyle L_{n}^{(a)}(z)} is a Laguerre function. Note that the 2 n {\displaystyle n} th moment is the same as the n {\displaystyle n} th moment of the noncentral chi-squared distribution with λ {\displaystyle \lambda } being replaced by λ 2 {\displaystyle \lambda ^{2}} .

Bivariate non-central chi distribution

Let X j = ( X 1 j , X 2 j ) , j = 1 , 2 , n {\displaystyle X_{j}=(X_{1j},X_{2j}),j=1,2,\dots n} , be a set of n independent and identically distributed bivariate normal random vectors with marginal distributions N ( μ i , σ i 2 ) , i = 1 , 2 {\displaystyle N(\mu _{i},\sigma _{i}^{2}),i=1,2} , correlation ρ {\displaystyle \rho } , and mean vector and covariance matrix

E ( X j ) = μ = ( μ 1 , μ 2 ) T , Σ = [ σ 11 σ 12 σ 21 σ 22 ] = [ σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ] , {\displaystyle E(X_{j})=\mu =(\mu _{1},\mu _{2})^{T},\qquad \Sigma ={\begin{bmatrix}\sigma _{11}&\sigma _{12}\\\sigma _{21}&\sigma _{22}\end{bmatrix}}={\begin{bmatrix}\sigma _{1}^{2}&\rho \sigma _{1}\sigma _{2}\\\rho \sigma _{1}\sigma _{2}&\sigma _{2}^{2}\end{bmatrix}},}

with Σ {\displaystyle \Sigma } positive definite. Define

U = [ j = 1 n X 1 j 2 σ 1 2 ] 1 / 2 , V = [ j = 1 n X 2 j 2 σ 2 2 ] 1 / 2 . {\displaystyle U=\left[\sum _{j=1}^{n}{\frac {X_{1j}^{2}}{\sigma _{1}^{2}}}\right]^{1/2},\qquad V=\left[\sum _{j=1}^{n}{\frac {X_{2j}^{2}}{\sigma _{2}^{2}}}\right]^{1/2}.}

Then the joint distribution of U, V is central or noncentral bivariate chi distribution with n degrees of freedom.[2][3] If either or both μ 1 0 {\displaystyle \mu _{1}\neq 0} or μ 2 0 {\displaystyle \mu _{2}\neq 0} the distribution is a noncentral bivariate chi distribution.

Related distributions

  • If X {\displaystyle X} is a random variable with the non-central chi distribution, the random variable X 2 {\displaystyle X^{2}} will have the noncentral chi-squared distribution. Other related distributions may be seen there.
  • If X {\displaystyle X} is chi distributed: X χ k {\displaystyle X\sim \chi _{k}} then X {\displaystyle X} is also non-central chi distributed: X N C χ k ( 0 ) {\displaystyle X\sim NC\chi _{k}(0)} . In other words, the chi distribution is a special case of the non-central chi distribution (i.e., with a non-centrality parameter of zero).
  • A noncentral chi distribution with 2 degrees of freedom is equivalent to a Rice distribution with σ = 1 {\displaystyle \sigma =1} .
  • If X follows a noncentral chi distribution with 1 degree of freedom and noncentrality parameter λ, then σX follows a folded normal distribution whose parameters are equal to σλ and σ2 for any value of σ.

References

  1. ^ J. H. Park (1961). "Moments of the Generalized Rayleigh Distribution". Quarterly of Applied Mathematics. 19 (1): 45–49. doi:10.1090/qam/119222. JSTOR 43634840.
  2. ^ Marakatha Krishnan (1967). "The Noncentral Bivariate Chi Distribution". SIAM Review. 9 (4): 708–714. Bibcode:1967SIAMR...9..708K. doi:10.1137/1009111.
  3. ^ P. R. Krishnaiah, P. Hagis, Jr. and L. Steinberg (1963). "A note on the bivariate chi distribution". SIAM Review. 5 (2): 140–144. Bibcode:1963SIAMR...5..140K. doi:10.1137/1005034. JSTOR 2027477.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons