Matrix t-distribution

Matrix t
Notation T n , p ( ν , M , Σ , Ω ) {\displaystyle {\rm {T}}_{n,p}(\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M {\displaystyle \mathbf {M} } location (real n × p {\displaystyle n\times p} matrix)
Ω {\displaystyle {\boldsymbol {\Omega }}} scale (positive-definite real p × p {\displaystyle p\times p} matrix)
Σ {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real n × n {\displaystyle n\times n} matrix)

ν {\displaystyle \nu } degrees of freedom
Support X R n × p {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γ p ( ν + n + p 1 2 ) ( π ) n p 2 Γ p ( ν + p 1 2 ) | Ω | n 2 | Σ | p 2 {\displaystyle {\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

× | I n + Σ 1 ( X M ) Ω 1 ( X M ) T | ν + n + p 1 2 {\displaystyle \times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}}}
CDF No analytic expression
Mean M {\displaystyle \mathbf {M} } if ν + p n > 1 {\displaystyle \nu +p-n>1} , else undefined
Mode M {\displaystyle \mathbf {M} }
Variance Σ Ω ν 2 {\displaystyle {\frac {{\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }}}{\nu -2}}} if ν > 2 {\displaystyle \nu >2} , else undefined
CF see below

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.[clarification needed] For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.[citation needed][2]

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.

Definition

For a matrix t-distribution, the probability density function at the point X {\displaystyle \mathbf {X} } of an n × p {\displaystyle n\times p} space is

f ( X ; ν , M , Σ , Ω ) = K × | I n + Σ 1 ( X M ) Ω 1 ( X M ) T | ν + n + p 1 2 , {\displaystyle f(\mathbf {X} ;\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})=K\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}},}

where the constant of integration K is given by

K = Γ p ( ν + n + p 1 2 ) ( π ) n p 2 Γ p ( ν + p 1 2 ) | Ω | n 2 | Σ | p 2 . {\displaystyle K={\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}.}

Here Γ p {\displaystyle \Gamma _{p}} is the multivariate gamma function.

The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

Generalized matrix t-distribution

Generalized matrix t
Notation T n , p ( α , β , M , Σ , Ω ) {\displaystyle {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M {\displaystyle \mathbf {M} } location (real n × p {\displaystyle n\times p} matrix)
Ω {\displaystyle {\boldsymbol {\Omega }}} scale (positive-definite real p × p {\displaystyle p\times p} matrix)
Σ {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real n × n {\displaystyle n\times n} matrix)
α > ( p 1 ) / 2 {\displaystyle \alpha >(p-1)/2} shape parameter

β > 0 {\displaystyle \beta >0} scale parameter
Support X R n × p {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γ p ( α + n / 2 ) ( 2 π / β ) n p 2 Γ p ( α ) | Ω | n 2 | Σ | p 2 {\displaystyle {\frac {\Gamma _{p}(\alpha +n/2)}{(2\pi /\beta )^{\frac {np}{2}}\Gamma _{p}(\alpha )}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

× | I n + β 2 Σ 1 ( X M ) Ω 1 ( X M ) T | ( α + n / 2 ) {\displaystyle \times \left|\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-(\alpha +n/2)}}
CDF No analytic expression
Mean M {\displaystyle \mathbf {M} }
Variance 2 ( Σ Ω ) β ( 2 α p 1 ) {\displaystyle {\frac {2({\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }})}{\beta (2\alpha -p-1)}}}
CF see below

The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.[3]

This reduces to the standard matrix t-distribution with β = 2 , α = ν + p 1 2 . {\displaystyle \beta =2,\alpha ={\frac {\nu +p-1}{2}}.}

The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

Properties

If X T n , p ( α , β , M , Σ , Ω ) {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} then[citation needed]

X T T p , n ( α , β , M T , Ω , Σ ) . {\displaystyle \mathbf {X} ^{\rm {T}}\sim {\rm {T}}_{p,n}(\alpha ,\beta ,\mathbf {M} ^{\rm {T}},{\boldsymbol {\Omega }},{\boldsymbol {\Sigma }}).}

The property above comes from Sylvester's determinant theorem:

det ( I n + β 2 Σ 1 ( X M ) Ω 1 ( X M ) T ) = {\displaystyle \det \left(\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right)=}
det ( I p + β 2 Ω 1 ( X T M T ) Σ 1 ( X T M T ) T ) . {\displaystyle \det \left(\mathbf {I} _{p}+{\frac {\beta }{2}}{\boldsymbol {\Omega }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}}){\boldsymbol {\Sigma }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}})^{\rm {T}}\right).}

If X T n , p ( α , β , M , Σ , Ω ) {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} and A ( n × n ) {\displaystyle \mathbf {A} (n\times n)} and B ( p × p ) {\displaystyle \mathbf {B} (p\times p)} are nonsingular matrices then[citation needed]

A X B T n , p ( α , β , A M B , A Σ A T , B T Ω B ) . {\displaystyle \mathbf {AXB} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {AMB} ,\mathbf {A} {\boldsymbol {\Sigma }}\mathbf {A} ^{\rm {T}},\mathbf {B} ^{\rm {T}}{\boldsymbol {\Omega }}\mathbf {B} ).}

The characteristic function is[3]

ϕ T ( Z ) = exp ( t r ( i Z M ) ) | Ω | α Γ p ( α ) ( 2 β ) α p | Z Σ Z | α B α ( 1 2 β Z Σ Z Ω ) , {\displaystyle \phi _{T}(\mathbf {Z} )={\frac {\exp({\rm {tr}}(i\mathbf {Z} '\mathbf {M} ))|{\boldsymbol {\Omega }}|^{\alpha }}{\Gamma _{p}(\alpha )(2\beta )^{\alpha p}}}|\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} |^{\alpha }B_{\alpha }\left({\frac {1}{2\beta }}\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} {\boldsymbol {\Omega }}\right),}

where

B δ ( W Z ) = | W | δ S > 0 exp ( t r ( S W S 1 Z ) ) | S | δ 1 2 ( p + 1 ) d S , {\displaystyle B_{\delta }(\mathbf {WZ} )=|\mathbf {W} |^{-\delta }\int _{\mathbf {S} >0}\exp \left({\rm {tr}}(-\mathbf {SW} -\mathbf {S^{-1}Z} )\right)|\mathbf {S} |^{-\delta -{\frac {1}{2}}(p+1)}d\mathbf {S} ,}

and where B δ {\displaystyle B_{\delta }} is the type-two Bessel function of Herz[clarification needed] of a matrix argument.

See also

Notes

  1. ^ Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
  2. ^ Gupta, Arjun K and Nagar, Daya K (1999). Matrix variate distributions. CRC Press. pp. Chapter 4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

External links

  • A C++ library for random matrix generator


  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons