JunD

Protein-coding gene in the species Homo sapiens

JUND
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

3U86

Identifiers
AliasesJUND, AP-1, JunD, JunD proto-oncogene, AP-1 transcription factor subunit
External IDsOMIM: 165162 MGI: 96648 HomoloGene: 3910 GeneCards: JUND
Gene location (Human)
Chromosome 19 (human)
Chr.Chromosome 19 (human)[1]
Chromosome 19 (human)
Genomic location for JUND
Genomic location for JUND
Band19p13.11Start18,279,694 bp[1]
End18,281,622 bp[1]
Gene location (Mouse)
Chromosome 8 (mouse)
Chr.Chromosome 8 (mouse)[2]
Chromosome 8 (mouse)
Genomic location for JUND
Genomic location for JUND
Band8 B3.3|8 34.15 cMStart71,151,599 bp[2]
End71,153,265 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • cardia

  • vena cava

  • nipple

  • pylorus

  • renal medulla

  • lactiferous duct

  • trachea

  • saphenous vein

  • Brodmann area 10

  • middle frontal gyrus
Top expressed in
  • adrenal gland

  • bone marrow

  • islet of Langerhans

  • ileum

  • ganglionic eminence

  • cerebellar cortex

  • urinary bladder

  • superior frontal gyrus

  • lip

  • jejunum
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
  • DNA binding
  • sequence-specific DNA binding
  • DNA-binding transcription factor activity
  • transcription coactivator activity
  • protein binding
  • enzyme binding
  • double-stranded DNA binding
  • RNA polymerase II cis-regulatory region sequence-specific DNA binding
  • transcription factor binding
  • DNA-binding transcription activator activity, RNA polymerase II-specific
  • DNA-binding transcription factor activity, RNA polymerase II-specific
  • nuclear receptor binding
Cellular component
  • protein-DNA complex
  • chromatin
  • nucleus
  • transcription factor AP-1 complex
  • protein-containing complex
  • nucleoplasm
  • transcription regulator complex
Biological process
  • cellular response to calcium ion
  • response to cytokine
  • regulation of transcription, DNA-templated
  • response to organic cyclic compound
  • response to light stimulus
  • regulation of cell death
  • human ageing
  • response to peptide hormone
  • negative regulation of transcription by RNA polymerase II
  • transcription by RNA polymerase II
  • transcription, DNA-templated
  • regulation of cell cycle
  • cellular response to hormone stimulus
  • positive regulation of osteoblast differentiation
  • regulation of cell population proliferation
  • circadian rhythm
  • positive regulation of cell differentiation
  • osteoblast development
  • response to radiation
  • response to cAMP
  • response to lipopolysaccharide
  • response to mechanical stimulus
  • regulation of transcription by RNA polymerase II
  • positive regulation of transcription by RNA polymerase II
  • response to organic substance
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3727

16478

Ensembl

ENSG00000130522

ENSMUSG00000071076

UniProt

P17535

P15066

RefSeq (mRNA)

NM_005354
NM_001286968

NM_001286944
NM_010592

RefSeq (protein)

NP_001273897
NP_005345

NP_001273873
NP_034722

Location (UCSC)Chr 19: 18.28 – 18.28 MbChr 8: 71.15 – 71.15 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Transcription factor JunD is a protein that in humans is encoded by the JUND gene.[5][6]

Function

The protein encoded by this intronless gene is a member of the JUN family, and a functional component of the AP1 transcription factor complex. It has been proposed to protect cells from p53-dependent senescence and apoptosis. Alternate translation initiation site usage results in the production of different isoforms.[7]

ΔJunD

The dominant negative mutant variant of JunD, known as ΔJunD or Delta JunD, is a potent antagonist of the ΔFosB transcript, as well as other forms of AP-1-mediated transcriptional activity.[8][9][10] In the nucleus accumbens, ΔJunD directly opposes many of the neurological changes that occur in addiction (i.e., those induced by ΔFosB).[9][10] ΔFosB inhibitors (drugs that oppose its action) may be an effective treatment for addiction and addictive disorders.[11] Being an unnatural genetic variant, deltaJunD has not been observed in humans.

Interactions

JunD has been shown to interact with ATF3,[12] MEN1,[13] DNA damage-inducible transcript 3[14] and BRCA1.[15]

See also

  • AP-1 (transcription factor)

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000130522 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000071076 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Nomura N, Ide M, Sasamoto S, Matsui M, Date T, Ishizaki R (July 1990). "Isolation of human cDNA clones of jun-related genes, jun-B and jun-D". Nucleic Acids Res. 18 (10): 3047–8. doi:10.1093/nar/18.10.3047. PMC 330838. PMID 2112242.
  6. ^ Berger I, Shaul Y (June 1991). "Structure and function of human jun-D". Oncogene. 6 (4): 561–6. PMID 1903194.
  7. ^ "Entrez Gene: JUND jun D proto-oncogene".
  8. ^ Hyman SE, Malenka RC, Nestler EJ (2006). "Neural mechanisms of addiction: the role of reward-related learning and memory". Annu. Rev. Neurosci. 29: 565–98. doi:10.1146/annurev.neuro.29.051605.113009. PMID 16776597.
  9. ^ a b Robison AJ, Nestler EJ (November 2011). "Transcriptional and epigenetic mechanisms of addiction". Nat. Rev. Neurosci. 12 (11): 623–37. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB has been linked directly to several addiction-related behaviors ... Importantly, genetic or viral overexpression of ΔJunD, a dominant negative mutant of JunD which antagonizes ΔFosB- and other AP-1-mediated transcriptional activity, in the NAc or OFC blocks these key effects of drug exposure14,22–24. This indicates that ΔFosB is both necessary and sufficient for many of the changes wrought in the brain by chronic drug exposure. ΔFosB is also induced in D1-type NAc MSNs by chronic consumption of several natural rewards, including sucrose, high fat food, sex, wheel running, where it promotes that consumption14,26–30. This implicates ΔFosB in the regulation of natural rewards under normal conditions and perhaps during pathological addictive-like states.
  10. ^ a b Pitchers KK, Frohmader KS, Vialou V, Mouzon E, Nestler EJ, Lehman MN, Coolen LM (October 2010). "ΔFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward". Genes Brain Behav. 9 (7): 831–40. doi:10.1111/j.1601-183X.2010.00621.x. PMC 2970635. PMID 20618447.
  11. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and addictive disorders". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 384–385. ISBN 9780071481274.
  12. ^ Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (January 1994). "Activating transcription factor-3 stimulates 3',5'-cyclic adenosine monophosphate-dependent gene expression". Mol. Endocrinol. 8 (1): 59–68. doi:10.1210/mend.8.1.8152431. PMID 8152431.
  13. ^ Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ, Burns AL (January 1999). "Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription". Cell. 96 (1): 143–52. doi:10.1016/S0092-8674(00)80967-8. PMID 9989505. S2CID 18116746.
  14. ^ Ubeda M, Vallejo M, Habener JF (November 1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Mol. Cell. Biol. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  15. ^ Hu YF, Li R (June 2002). "JunB potentiates function of BRCA1 activation domain 1 (AD1) through a coiled-coil-mediated interaction". Genes Dev. 16 (12): 1509–17. doi:10.1101/gad.995502. PMC 186344. PMID 12080089.

Further reading

  • Mollinedo F, Vaquerizo MJ, Naranjo JR (1991). "Expression of c-jun, jun B and jun D proto-oncogenes in human peripheral-blood granulocytes". Biochem. J. 273(Pt 2) (2): 477–9. doi:10.1042/bj2730477. PMC 1149869. PMID 1899335.
  • Franklin CC, McCulloch AV, Kraft AS (1995). "In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB". Biochem. J. 305 (3): 967–74. doi:10.1042/bj3050967. PMC 1136352. PMID 7848298.
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (1994). "Activating transcription factor-3 stimulates 3',5'-cyclic adenosine monophosphate-dependent gene expression". Mol. Endocrinol. 8 (1): 59–68. doi:10.1210/mend.8.1.8152431. PMID 8152431.
  • Trask B, Fertitta A, Christensen M, Youngblom J, Bergmann A, Copeland A, de Jong P, Mohrenweiser H, Olsen A, Carrano A (1993). "Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers". Genomics. 15 (1): 133–45. doi:10.1006/geno.1993.1021. PMID 8432525.
  • Dorsey MJ, Tae HJ, Sollenberger KG, Mascarenhas NT, Johansen LM, Taparowsky EJ (1995). "B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family". Oncogene. 11 (11): 2255–65. PMID 8570175.
  • Claret FX, Hibi M, Dhut S, Toda T, Karin M (1996). "A new group of conserved coactivators that increase the specificity of AP-1 transcription factors". Nature. 383 (6599): 453–7. Bibcode:1996Natur.383..453C. doi:10.1038/383453a0. PMID 8837781. S2CID 4353893.
  • Kallunki T, Deng T, Hibi M, Karin M (1996). "c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions". Cell. 87 (5): 929–39. doi:10.1016/S0092-8674(00)81999-6. PMID 8945519. S2CID 10345690.
  • Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M (1997). "Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions". Mol. Cell. Biol. 17 (6): 3094–102. doi:10.1128/mcb.17.6.3094. PMC 232162. PMID 9154808.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Labudova O, Krapfenbauer K, Moenkemann H, Rink H, Kitzmüller E, Cairns N, Lubec G (1998). "Decreased transcription factor junD in brains of patients with Down syndrome". Neurosci. Lett. 252 (3): 159–62. doi:10.1016/S0304-3940(98)00569-2. PMID 9739985. S2CID 44836385.
  • Venugopal R, Jaiswal AK (1998). "Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes". Oncogene. 17 (24): 3145–56. doi:10.1038/sj.onc.1202237. PMID 9872330. S2CID 7917564.
  • Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ, Burns AL (1999). "Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription". Cell. 96 (1): 143–52. doi:10.1016/S0092-8674(00)80967-8. PMID 9989505. S2CID 18116746.
  • Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF (1999). "Smads bind directly to the Jun family of AP-1 transcription factors". Proc. Natl. Acad. Sci. U.S.A. 96 (9): 4844–9. Bibcode:1999PNAS...96.4844L. doi:10.1073/pnas.96.9.4844. PMC 21779. PMID 10220381.
  • Gobl AE, Berg M, Lopez-Egido JR, Oberg K, Skogseid B, Westin G (1999). "Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism". Biochim. Biophys. Acta. 1447 (1): 51–6. doi:10.1016/S0167-4781(99)00132-3. PMID 10500243.
  • Ubeda M, Vallejo M, Habener JF (1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Mol. Cell. Biol. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  • Miyamoto NG, Medberry PS, Hesselgesser J, Boehlk S, Nelson PJ, Krensky AM, Perez HD (2000). "Interleukin-1beta induction of the chemokine RANTES promoter in the human astrocytoma line CH235 requires both constitutive and inducible transcription factors". J. Neuroimmunol. 105 (1): 78–90. doi:10.1016/S0165-5728(00)00195-8. PMID 10713367. S2CID 8547340.
  • Sharma SC, Richards JS (2000). "Regulation of AP1 (Jun/Fos) factor expression and activation in ovarian granulosa cells. Relation of JunD and Fra2 to terminal differentiation". J. Biol. Chem. 275 (43): 33718–28. doi:10.1074/jbc.M003555200. PMID 10934195.

External links

  • JUND+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • FactorBook JunD
  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Transcription factor jun-D


This article incorporates text from the United States National Library of Medicine, which is in the public domain.


  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies